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Outline
• Examples of structural materials design data

• Overview of key temperature regimes for radiation damage
– Amorphization, point defect swelling, void swelling
– (corresponds to immobile SIAs, immobile vacancies, and fully mobile

defects, respectively)

• Radiation hardening fundamentals

• Design strategy for radiation resistance
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Development of structural materials for applications
involving public safety is historically a long process
• “When you hear something about a new material, write it

down because it will be the best thing you’ll ever hear about
it” (Jim Williams, paraphrasing Bob Sprague of General Electric)

• Aerospace structural materials
– Over 50 years to develop TiAl intermetallics from initial studies in

1950s
– Design cycle times have been reduced to 3-5 years, but development

and qualification of new materials still requires >7 years
• Qualification time dominated by creep and fatigue testing

• Structural materials for nuclear reactors
– Qualification requires all of the mechanical property testing on

unirradiated material, plus neutron irradiation and testing of
irradiated material
• Sequential approach would lead to unacceptably long qualification times
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History of improvement in temperature capability of Ni-
base superalloys
• Historical rate of improvement is ~5oC/year

Y. Koizumi et al., Proc. Int. Gas Turbines Conf., 2003, paper TS-119
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Qualification of new structural materials involves two
considerations based on safety and financial protection
• Cognizant licensing authority

– Considers public safety aspects
– Generally requires the structural material to be evaluated by an

appropriate independent engineering society (e.g., ASME, ASTM,
etc.)

• Capital investment organization (federal government, utility,
etc.)
– Considers potential risk to their investment if a structural material

fails
– Generally requires the structural material to qualified using well-

established engineering procedures (e.g., ASME, RRC-MR, JSME,
etc.)



6 Managed by UT-Battelle
for the U.S. Department of Energy

Determination of design curves

• Tensile strength
– If large number of test data are available, then design curve can be

set at a value equal to two standard deviations below the mean value
(represents 97.5% confidence limit)

– Alternatively, the design curve can be set at the minimum strength
values in the data base

• Fatigue data
– Strain range vs. fatigue cycle design curve is determined by the

minimum of either εt/2 or Nf/20



7 Managed by UT-Battelle
for the U.S. Department of Energy

Mean tensile strengths for Type 316 stainless steel

G.M. Kalinin
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Design tensile strengths for Type 316 stainless steel

G.M. Kalinin
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Design tensile strengths for Type 316 stainless steel

A.A.F. Tavassoli



Summary of design and mean fitted fatigue curve
• Unirradiated Cu
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H. McCoy, ORNL

1350 K, 17.2 MPaHeat 1614,
45 µm

Heat 530870,
44 µm

Heat 530870,
44 µm

Large variability in thermal creep behavior for three
heats of nominally identical Nb-1Zr

• In addition to grain size, these results show that other microstructural
inhomogeneities can also affect the thermal creep behavior of Nb-1Zr
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Development of Texture in Annealed Nb-1Zr
• Texture pattern in recrystallized Nb-1Zr is strongly dependent on

annealing conditions

FHR: fast heating rate (>1000˚C/min)
SFR: slow heating rate (10˚C/min)
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Overview of Radiation Damage Recovery Stages

• Originally based on electrical resistivity measurements
–Stage I: self-interstitial atom migration (correlated and uncorrelated)
–Stage II: long-range migration of SIA clusters and SIA-impurity

complexes
–Stage III: longstanding controversy; near universal agreement that it is

associated with vacancy migration
–Stage IV: migration of vacancy clusters and vacancy-solute complexes
–Stage V: thermal dissociation of (displacement cascade-produced)

vacancy clusters

• Note: recovery stage temperatures are not unique; they
depend on annealing time (e.g., displacement damage rate)



•  3 distinct swelling regimes are
observed in irradiated Al2O3
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SiC Amorphization
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Comparison of Stage I recovery behavior in Cu after
electron and neutron irradiation

Zinkle and Singh,J. Nucl.
Mater. 199 (1993) 173

Recent kinetic Monte
Carlo validation of
recovery stages in
irradiated Fe:
C.C. Fu et al., Nature Mat.
4 (2005) 68
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Defect Production in Irradiated Materials
• Transition from linear to square root defect accumulation behavior is a

characteristic feature of any pure material irradiated at temperatures
where point defects are mobile
– Location of transition is dependent on purity and recombination X-section

Zinkle, JNM 150 (1987) 140
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Square root fluence dependence of defect accumulation is an
indication of uncorrelated point defect recombination

• Ionizing radiation may induce athermal point defect recombination in
some ceramics (!)
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Radiation Hardening in Copper: Seeger vs. Friedel
relationships

• Two general models are available to describe
radiation hardening (∆σ) in metals:
– Dispersed barrier model (Seeger, 1958)--valid for

strong obstacles

Where M=Taylor factor
α=defect cluster barrier strength
µ=shear modulus
b=Burgers vector of glide dislocation
N, d=defect cluster density, diameter

– Friedel 1963 (also Kroupa and Hirsch 1964) weak
barrier model:

! 

"# = M$µb Nd

! 

"# =
1

8
MµbdN 2/3
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Effect of test temperature on irradiated strength

• What is the effect of irradiation on the yield strength test
temperature dependence (athermal and thermal
components)?
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BCC metals: large τthermal component

FCC metals: small τthermal component

Hardening models (Seeger, Fleisher, etc.):
Thermal component of flow stress is
controlled by radiation-induced hardening
centers
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Comparison of the Yield Strength Behavior of Annealed
and Irradiated Iron at Higher Doses
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Molecular Dynamics Simulations of the Effect ofMolecular Dynamics Simulations of the Effect of
Temperature on Obstacle StrengthTemperature on Obstacle Strength
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Understanding dislocation-obstacle interaction mechanisms is central to
learning how to engineer materials with better low-temperature ductility
and fracture toughness.

Y.N. Osetsky



Advanced nuclear energy systems impose harsh radiation damage
conditions on structural materials
• 1 displacement per atom (dpa) corresponds to stable

displacement from their lattice site of all atoms in the
material during irradiation near absolute zero (no
thermally-activated point defect diffusion)
– Initial number of atoms knocked off their lattice site

during fast reactor neutron irradiation is ~100 times
the dpa value
• Most of these originally displaced atoms hop onto

another lattice site during “thermal spike” phase of the
displacement cascade (~1 ps)

• Requirement for structural materials in advanced nuclear energy systems
(~100 dpa exposure):
–  ~99.95% of “stable” displacement damage must recombine

• ~99.9995% of initially dislodged atoms must recombine

• Two general strategies for radiation resistance can be envisioned:
– Noncrystalline materials
– Materials with a high density of nanoscale recombination centers

R.E. Stoller

after S.J. Zinkle, Phys. Plasmas 12 (2005) 058101
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Recent Molecular Dynamics simulations have provided key fundamental
information on defect production

Large vacancy clusters are not directly
formed in BCC metal displacement cascades

Cu

Fe

25 keV cascades
Yu. N. Osetsky and R.E. Stoller

Vacancies
interstitials

• Effect of knock-on atom energy and crystal structure on defect production

• subcascade formation leads to asymptotic surviving defect fraction at high energies

after S.J. Zinkle, Phys. Plasmas 12 (2005) 058101
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Correlated in-cascade recombination reduces surviving defect
fraction due to freely migrating interstitials

Stage I Stage III

Zinkle and Singh,J. Nucl.
Mater. 199 (1993) 173

Stage V

Cu
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Stage V
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Cavity formation in austenitic stainless steel
Zinkle, Maziasz &
Stoller, J. Nucl. Mater.
206 (1993) 266

Stage V
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Determination of interstitial migration energies in ceramics

• Solve steady state rate eqns:

Di

d2 Ci

dx 2
!"CiCv ! DiCiCs + P = 0

Dv

d2C v

dx 2
!"CiCv !DvC vCs + P = 0

• For sink-dominant conditions (CS>1014/m2),
the defect-free zone width is related to the
diffusivity (Di) and damage rate (P) by:

Di =
L P

Ci
crit

Cs

Defect-free zones in ion-
irradiated MgAl2O4

Defect-free grain boundary
zones in ion-irradiated Al2O3
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Variation of void swelling vs. distance from
grain boundaries in pure well-annealed Al
irradiated with fission neutrons at 120°C.
Note enhancement in swelling in a relatively
wide zone near the grain boundaries (after
Singh 1999).
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Enhanced void swelling next to grain boundary in
neutron-irradiated Cu-Ni alloys

Zinkle and Singh, J.
Nucl. Mater. 283-287
(2000)306

420oC, 14 dpa



Radiation Damage can Produce Large Changes in Structural Materials

• Radiation hardening and embrittlement (<0.4 TM,
>0.1 dpa)

• Phase instabilities from radiation-induced
precipitation (0.3-0.6 TM, >10 dpa)

• Irradiation creep (<0.45 TM, >10 dpa)

• Volumetric swelling from void formation (0.3-0.6
TM, >10 dpa)

• High temperature He embrittlement   (>0.5 TM,
>10 dpa)
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Defect clusters in neutron irradiated copper (low T)
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Comparison of defect cluster evolution in neutron
irradiated Cu and Ni (low T)

Zinkle and Snead,J. Nucl. Mater. 225 (1995) 123
Zinkle and Singh, J. Nucl. Mater. 283-287 (2000) 306
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Dislocation loop evolution in
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Peak loop density occurs at ~0.01 dpa
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Dislocation loop formation is enhanced in Cu alloys irradiated
below Stage V

~1 dpa, 100˚C, LAMPF

CopperCopper Cu-5%Cu-5%MnMn Cu-5%NiCu-5%Ni
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Dislocation loop formation is enhanced in Cu alloys compared to
pure Cu irradiated below Stage V
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Formation of dislocation loop rafts in Fe after
neutron irradiation to 0.8 dpa at 70˚C

S.J. Zinkle and B.N. Singh,
J. Nucl. Mater. 351 (2006) 269

a/2<111>{111} loops form in rafts along <110> directions



Design of Radiation-Resistant Materials:
KMC Modeling of Pinning and Rafting
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Low tensile ductility in FCC and BCC metals after irradiation at
low temperature is due to formation of nanoscale defect clusters

Outstanding questions to be resolved include:
 Can the defect cluster formation be
modified by appropriate use of nanoscale
2nd phase features or solute additions?
 Can the poor ductility of the irradiated
materials be mitigated by altering the
predominant deformation mode? (e.g.,
twinning vs. dislocation glide)
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Radiation hardening in V-4Cr-4Ti
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Low tensile ductility in FCC and BCC metals after irradiation at
low temperature is due to formation of nanoscale defect clusters

Outstanding questions to be resolved include:
 Can the defect cluster formation be
modified by appropriate use of nanoscale
2nd phase features or solute additions?
 Can the poor ductility of the irradiated
materials be mitigated by altering the
predominant deformation mode? (e.g.,
twinning vs. dislocation glide)
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Fracture surface of Irradiated Nb-1Zr shows ductile behavior,
despite low uniform elongation value

F.W. Wiffen, unpublished results
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Localized deformation (and dislocation channeling)
occurs in many irradiated material systems

Vanadium

316 SS316 SS

A533BA533B

Zircaloy-4

MolybdenumMolybdenum

CopperCopper
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Direct formation of SFTs in Cu displacement cascades based
on molecular dynamics simulations

• Nearly perfect SFTs are formed in cascades within ~50 ps

Yu. N. Osetsky

L=2.3 nm
L=1.3 nm
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Dislocation channel interactions in Fe deformed following neutron
irradiation at 70˚C to 0.8 dpa

g.b.

Need well-engineered materials to
mitigate neutron radiation effects

Cleared
slip
channel

~200 nm~200 nm
offsetoffset

}}
~80 nm~80 nm
offsetoffset}}

Zinkle & Singh, J. Nucl. Mater. 351 (2006) 269
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Dislocation interaction with SFTs in quenched Au

• Type 1 interaction (Frank loop formation) at room temperature
Matsukawa, Stoller, Osetsky & Zinkle
J. Nucl. Mater. 351 (2006) 285
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Dislocation interaction with SFTs in quenched Au

• Type 2 interaction at room temperature (superjog creation
with no SFT remnant)

Matsukawa, Stoller, Osetsky & Zinkle
J. Nucl. Mater. 351 (2006) 285
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Dislocation interaction with SFTs in quenched Au

• Types 1(a) & 2(b) interactions also occur at 100 K (no vacancy
migration)

Matsukawa, Stoller, Osetsky & Zinkle
J. Nucl. Mater. 351 (2006) 285
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Dislocation interaction with SFTs in quenched Au

• Type 3 interactions at room temperature (SFT apex
remains); not observed at 100 K

Matsukawa, Stoller, Osetsky & Zinkle
J. Nucl. Mater. 351 (2006) 285
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Effect of temperature on edge dislocation interaction with 136 vacancy SFT in Cu

300 K
450 K

Defect cluster annihilation is enhanced at higher temperatures and slower strain
rates (strain rate effect not shown)

- agrees with experimental results
Other parameters such as effect of obstacle size are also under investigation

Y.N. Osetsky
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Interaction of a screw dislocation with 78-vacancy SFT and 91-intersitital cluster in
Cu thin foil

300 K

Cooperative effects may be important for annihilation of sessile defect
clusters by gliding dislocations during deformation

Yu.N. Osetsky



Engineering and true stress-strain tensile curves for stainless steel before
and after spallation irradiation at ~100˚C
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Plastic Instability Stress (σPI) of BCC Metals

•  Plastic Instability Stress (σPI) = the true stress version of Ultimate Tensile Stress
•  Plastic Instability Stress is independent of dose when yield stress < σPI.
•  Yield stress can be > σPI, which is defined only when uniform deformation exists.
•  σPI is considered to be a material constant, independent of initial cold-work or radiation-

induced defect clusters

σML=true stress at maximum load
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Deformation mechanisms in stainless steel
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Irradiation induces changes in
controlling deformation mechanisms

Channeling (Disln glide) occurs at higher
temperatures (~300˚C)

Twinning occurs
at lower

temperatures
(<200˚C) and high

strain rates

Zinkle and Lucas Hashimoto et al., J. Nucl. Mat.
283-287 (2000) 528



Structural materials involve compromise between strength
and ductility

Schenectady Liberty ship, 1943

A simple measure of the resistance
to brittle cleavage failure is the
Charpy notched impact test



7

•  Elliptical hole in
     a plate:

•  Stress distrib. in front of a hole:

•  Stress conc. factor:

•  Large Kt promotes failure:

FLAWS ARE STRESS CONCENTRATORS!

J. Hayton
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Irradiation of Austenitic Stainless Steel in Mixed Spectrum
Reactors causes Pronounced Loss in Elongation and Significant

Reduction in Fracture Toughness
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Fracture Toughness of BCC Structural Alloys

• Ludwig-Davidenkov relation provides a
rough estimation of embrittlement due
to radiation hardening

• Radiation hardening induces an increase  in the ductile-brittle
transition temperature (DBTT) in body-centered cubic metals

•Two approaches to mitigate radiation embrittlement: reduce radiation hardening, or
increase critical stress (σ*)

• Significant improvements in resistance to low
temperature radiation embrittlement can be
achieved by selective alloying (e.g., reduced
Cu in reactor pressure vessel steels)
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•Macroscopic Mode I fracture is composed of
coordinated Mode III shear displacements at the crack tip

TEM in-situ deformation studies can be used to provide insight on
fundamental fracture processes
Atomic resolution imaging of ductile crack propagation (plane stress)

2 nm
Y. Matsukawa, ORNL
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The Operating Window for BCC metals can be Divided into Four
Regimes (red values are relevant for Nb1Zr)

I, II:  Low Temperature Radiation Embrittlement Regimes
– Fracture toughness (KJ) embrittlement: high radiation hardening causes low

resistance to crack propagation (occurs when SU>500-700 MPa)
• Regimes which cause KJ<30 MPa-m1/2 should be avoided (Tirr< ~600 K ?)

– Loss of ductility: localized plastic deformation requires use of more conservative
engineering design rules for primary+secondary stress (Se)

III:  Ductile Yield and Ultimate Tensile Strength Regime (eU>0.02)
– Sets allowable stress at intermediate temperature (very small regime for Nb-1Zr)

IV:  High Temperature Thermal Creep Regime (T>~1050 K)
– Deformation limit depends on engineering application (common metrics are 1%

deformation and complete rupture)
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where εU is uniform elongation, SU is ultimate tensile strength, E is elastic modulus
(additional design rules also need to be considered)

(Tirr< ~900-1270 K)
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Stress-Temperature Design Window for Nb-1Zr
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Conventional structural materials are capable of operation within
~300oC temperature window

Structural Material Operating Temperature Windows: 10-50 dpa

Low temperature radiation embrittlement typically
occurs for damage levels ~0.1 dpa (0.01 MW-yr/m2)
Zinkle and Ghoniem, Fusion Engr.

Des. 51-52 (2000) 55

Thermal creep

Radiation
embrittlement

ηCarnot=1-Treject/Thigh



67 Managed by UT-Battelle
for the U.S. Department of Energy

Consideration of Chemical Compatibility can Result in Dramatic
Reductions in Temperature Window

Estimated Structural Material Operating Temperature Windows:
Moderately-pure He coolant, 10-50 dpa

Zinkle and Ghoniem, Fusion Engr.
Des. 51-52 (2000) 55

Group V refractory alloys are particularly sensitive to embrittlement from O,C,N solute
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Gelles 1996; Garner & Toloczko 2000; Klueh & Harries 2001
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Swelling Resistant Alloys can be developed by Controlling the He
Cavity Trapping at Precipitates

200 nm200 nm

These nanoscale precipitates also typically
provide improved thermal creep strength

Mansur & Lee
J. Nucl. Mat.
179-181
(1991) 105
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C.L. Fu et al.
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Conclusions

• Integrated computational modeling and experimental studies
can accelerate the development and qualification of high
performance materials for nuclear energy systems

• Ongoing radiation materials science research programs span
from fundamental studies to targeted alloy development

• Common research themes include:
– Investigation of fundamental phenomena responsible for materials

property changes (degradation) due to irradiation
– Development of radiation resistant high-performance structural

material systems


